PERANCANGAN PLANT PENGOLAHAN AIR ASAM TAMBANG DENGAN PROSES SAND FILTRASI, ULTRAFILTRASI DAN REVERSE OSMOSIS

Subriyer Nasir, Eddy Ibrahim, A. Taufik Arief

Abstract


Air asam tambang (Acid Mine Drainage) merupakan masalah serius bagi lingkungan. Selain karena pH yang rendah, air asam tambang juga mengandung ion-ion logam berat seperti Al, Mn, Fe dan ion lain. Tujuan penelitian ini adalah merancang peralatan pengolahan air asam tambang dengan menggabungkan tiga macam unit pengolah yaitu sand filter, ultrafiltrasi dan reverse osmosis. Plant mini yang dirancang adalah kombinasi dari sand filter, ultrafiltrasi dan reverse osmosis. Sampel yang diteliti berasal dari salah satu perusahaan penambangan batubara di Sumatera Selatan. Variabel yang diteliti adalah laju alir, tekanan dan waktu operasi.Parameter yang diperiksa adalah pH, TSS, TDS, EC, turbidity, dan fluks permeat. Hasil yang diperoleh memperlihatkan bahwa kombinasi sand filter yang dilengkapi dengan filtrasi menggunakan fly-ash dan rice husk dapat menaikkan pH air asam tambang dari 3,9 menjadi 7,2.

Keywords


air asam tambang, sand filter, ultrafiltrasi, reverse osmosis

Full Text:

PDF

References


Baker, R.W., (2004). Membrane Technology and Applications, 2 nded John Wiley and Sons, West Sussex, England.

Buzzi, D.C, Viegas, L.S., Rodrigues, M.A.S., Bernardes, A.M., & Tenório, J.A.S., (2013), Water recovery from acid mine drainage by electrodialysis. Minerals Engineering, 40, 82–89.

Cséfalvay, E., Pauer, V., & Mizsey, P., (2009). Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination, 240, 1–3, 132-142.

Costello, C (2003). Acid Mine Drainage : Innovative Treatment Technologies, U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington DC.

Johnson, D. B., & Hallberg, K.B., (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338, 3– 14.

Luptakova, A., Ubaldini, S., Macingova, E., Fornari, P., & Giuliano, V., (2012). Application of physical–chemical and biological–chemical methods for heavy metals removal from acid mine drainage. Process Biochemistry, 47, 11, 1633–1639.

Mohan, D & Chander, S., (2006). Removal and recovery of metal ions from acid mine drainage using lignite-A low cost sorbent. Journal of Hazardous Materials, 137, 3, 1545-1553.

Nasir, S., (2007).Membrane Performance and Build-up of Solute in Small scale of Reverse Osmosis, PhD Thesis, Curtin University of Technology, Australia.

Petala, M., Tsiridis, V., Samaras, P., Zouboulis, A., & Sakellaropoulos, G.P., (2006). Wastewater reclamation by advanced treatment of secondary effluents.Desalination, 195, 1-3, 109-118.

Ríos, C.A, Williams, C.D., & Roberts, C.L., (2008). Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. Journal of Hazardous Materials, 156, 1–3, 23–35.

Shao, E., Wei, J., Yo, A., & Levy, R., (2009). Application of Ultrafiltration and Reverse Osmosis for Mine Waste Water Reuse. Water in Mining, Perth, Western Australia.

Skousen, J et-al (1998). Handbook of Technologies for Avoidance and Remediation of Acid Mine Drainage, The National Mine Land Reclamation Centre, Morgantown, West Virginia.

Toze, S., (2006). Reuse of effluent water--benefits and risks, Agricultural Water Management Special Issue on Water Scarcity: Challenges and Opportunities for Crop Science, 80, 1-3, 147-159.

Vela, M.C.V., Blanco, S. A., García, J.L., Gozálvez-Zafrilla, J.M., & Rodríguez. E.B., (2007).Modelling of flux decline in crossflow ultrafiltration of macromolecules: comparison between predicted and experimental results. Desalination, 204, 1–3, 328–334.

Watzlaf, G.R., Schroeder, K.T., Kleinmann, R.L.P., Kairies, C.L., & Nairn, R.W., (2004). The Passive Treatment of Coal Mine Drainage, DOE/NETL-2004/1202, U.S. Department of Energy, National Energy Technology Laboratory Pittsburgh, PA.




License URL: https://creativecommons.org/licenses/by-nc/4.0